On a convergence test of Hardy-Littlewood's type for fourier series

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fourier Series Acceleration and Hardy-littlewood Series

We discuss the effects of the δ2 and Lubkin acceleration methods on the partial sums of Fourier Series. We construct continuous, even Hölder continuous functions, for which these acceleration methods fail to give convergence. The constructed functions include some interesting trigonometric series whose properties were investigated by Hardy and Littlewood.

متن کامل

Convergence of Fourier Series

The purpose of this paper is to explore the basic question of the convergence of Fourier series. This paper will not delve into the deeper questions of convergence that measure theory illuminates, but requires only the basic principles set out by introductory real and complex analysis.

متن کامل

Convergence of Random Fourier Series

This paper will study Fourier Series with random coefficients. We begin with an introduction to Fourier series on the torus and give some of the most important results. We then give some important results from probability theory, and build on these to prove a variety of theorems that deal with the convergence or divergence of general random series. In the final section, the focus is placed on r...

متن کامل

Pointwise convergence of Fourier series

In the early 19 century, J. Fourier was an impassioned advocate of the use of such sums, of course writing sines and cosines rather than complex exponentials. Euler, the Bernouillis, and others had used such sums in similar fashions and for similar ends, but Fourier made a claim extravagant for the time, namely that all functions could be expressed in such terms. Unfortunately, in those days th...

متن کامل

Hardy type derivations on generalised series fields

We consider the valued fieldK := R((Γ)) of generalised series (with real coefficients and monomials in a totally ordered multiplicative group Γ ). We investigate how to endow K with a series derivation, that is a derivation that satisfies some natural properties such as commuting with infinite sums (strong linearity) and (an infinite version of) Leibniz rule. We characterize when such a derivat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Australian Mathematical Society

سال: 1964

ISSN: 0004-9735

DOI: 10.1017/s1446788700022734